
DFT_test2

April 1, 2019

In [1]: import numpy as np

In [2]: def DFT_fn(x):
sze_x = np.size(x)
X_val = np.zeros((sze_x

,),dtype=np.complex128)
for m in range(0,sze_x):

for n in range(0,sze_x):
X_val[m] += x[n]*np.exp(-np.pi*2j * m * n / sze_x)

return X_val

In [3]: X = np.random.rand(1024,)

0.1 Now lets run our DFT algo

In [4]: DFT_fn(X)

Out[4]: array([5.19427754e+02+0.j , -5.15631843e-01-7.50074858j,
2.87225543e+00+5.39983673j, ..., -3.13363011e-01-3.38512972j,
2.87225543e+00-5.39983673j, -5.15631843e-01+7.50074858j])

0.2 Now lets run the Numpy’s FFT for comparision

In [5]: np.fft.fft(X)

Out[5]: array([5.19427754e+02+0.j , -5.15631843e-01-7.50074858j,
2.87225543e+00+5.39983673j, ..., -3.13363011e-01-3.38512972j,
2.87225543e+00-5.39983673j, -5.15631843e-01+7.50074858j])

0.3 Now lets see if our implimentation of DFT is same as the FFT of numpy’s

In [6]: np.allclose(DFT_fn(X),np.fft.fft(X))

Out[6]: True

0.4 Hurray!! Yes, both of them are equal

1

	Now lets run our DFT algo
	Now lets run the Numpy's FFT for comparision
	Now lets see if our implimentation of DFT is same as the FFT of numpy's
	Hurray!! Yes, both of them are equal

