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In [1]: import numpy as np

In [2]: def DFT_fn(x):
sze_x = np.size(x)
X_val = np.zeros((sze_x

,),dtype=np.complex128)
for m in range(0,sze_x):

for n in range(0,sze_x):
X_val[m] += x[n]*np.exp(-np.pi*2j * m * n / sze_x)

return X_val

In [3]: X = np.random.rand(1024,)

0.1 Now lets run our DFT algo

In [4]: DFT_fn(X)

Out[4]: array([ 5.19427754e+02+0.j , -5.15631843e-01-7.50074858j,
2.87225543e+00+5.39983673j, ..., -3.13363011e-01-3.38512972j,
2.87225543e+00-5.39983673j, -5.15631843e-01+7.50074858j])

0.2 Now lets run the Numpy’s FFT for comparision

In [5]: np.fft.fft(X)

Out[5]: array([ 5.19427754e+02+0.j , -5.15631843e-01-7.50074858j,
2.87225543e+00+5.39983673j, ..., -3.13363011e-01-3.38512972j,
2.87225543e+00-5.39983673j, -5.15631843e-01+7.50074858j])

0.3 Now lets see if our implimentation of DFT is same as the FFT of numpy’s

In [6]: np.allclose(DFT_fn(X),np.fft.fft(X))

Out[6]: True

0.4 Hurray!! Yes, both of them are equal
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