
p4_code_jupyter_notebook

March 31, 2019

In [1]: import scipy.io.wavfile as wav
from numpy.lib import stride_tricks
import matplotlib.pyplot as plt
import numpy as np

In [2]: def plot_spectrogram(wav_file_path, binsize=2**10, plotpath="p4_1_ball_bounce_brick_mono.png", colormap="jet"):
samplerate, taken_samps = wav.read(wav_file_path)

s = short_time_FT(taken_samps, binsize)

sshow, freq = scale_freq_log(s, factor=1.0, sr=samplerate)

spec_Output = 20.*np.log10(np.abs(sshow)/10e-6)

timebins, freqbins = np.shape(spec_Output)

plt.figure(figsize=(15, 7.5))
plt.imshow(np.transpose(spec_Output), origin="lower", aspect="auto", cmap=colormap, interpolation="none")
plt.colorbar()

plt.xlabel("time (s)")
plt.ylabel("freq (hz)")
plt.xlim([0, timebins-1])
plt.ylim([0, freqbins])

xlocs = np.float32(np.linspace(0, timebins-1, 5))
plt.xticks(xlocs, ["%.02f" % l for l in ((xlocs*len(taken_samps)/timebins)+(0.5*binsize))/samplerate])
ylocs = np.int16(np.round(np.linspace(0, freqbins-1, 10)))
plt.yticks(ylocs, ["%.02f" % freq[i] for i in ylocs])

if plotpath:
plt.savefig(plotpath, bbox_inches="tight")
plt.show()

else:
plt.show()

plt.clf()

1

return spec_Output

def scale_freq_log(spec, sr=44100, factor=20.):
timebins, freqbins = np.shape(spec)

scale = np.linspace(0, 1, freqbins) ** factor
scale *= (freqbins-1)/max(scale)
scale = np.unique(np.round(scale))
newspec = np.complex128(np.zeros([timebins, len(scale)]))
for i in range(0, len(scale)):

if i == len(scale)-1:
newspec[:,i] = np.sum(spec[:,int(scale[i]):], axis=1)

else:
newspec[:,i] = np.sum(spec[:,int(scale[i]):int(scale[i+1])], axis=1)

allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1])
freqs = []
for i in range(0, len(scale)):

if i == len(scale)-1:
freqs += [np.mean(allfreqs[int(scale[i]):])]

else:
freqs += [np.mean(allfreqs[int(scale[i]):int(scale[i+1])])]

return newspec, freqs

def short_time_FT(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hop_sze = int(frameSize - np.floor(overlapFac * frameSize))
taken_samps = np.append(np.zeros(int(np.floor(frameSize/2.0))), sig)
columns = np.ceil((len(taken_samps) - frameSize) / float(hop_sze)) + 1
taken_samps = np.append(taken_samps, np.zeros(frameSize))
frames = stride_tricks.as_strided(taken_samps, shape=(int(columns), frameSize), strides=(taken_samps.strides[0]*hop_sze, taken_samps.strides[0])).copy()
frames *= win

return np.fft.rfft(frames)

In [3]: spec_Output = plot_spectrogram('ball_bounce_brick_mono.wav')

2

<Figure size 432x288 with 0 Axes>

3

