p6_code

April 1, 2019

DTMEF

1209 Hz 1336 Hz 1477 Hz 1633 Hz
697Hz123 A

770Hz456 B

852Hz789C

941 Hz*0#D

In [ ]: import math
import numpy as np
import time
import wave
import matplotlib.pyplot as plt
from scipy import signal
from scipy.io import wavfile
import pyaudio
import sys
import scipy.io.wavfile as wav
from numpy.lib import stride_tricks

In [ ]: num_channels = 1
human_freq_rate = 44100
FORMAT = pyaudio.paFloat32
chunk_size = 1024
rec_tot_secs = 5
audio_output_file_name = "p6_173_toneCode.wav"
p = pyaudio.PyAudio()

In [ ]: def gen_sin_wave(freq, len, rate):
len = int(len * rate)
factor = float(freq) * (math.pi * 2) / rate
return np.sin(np.arange(len) * factor)



def

def

def

add_sine_waves(f1, f2, len, rate):
sine_wavel=gen_sin_wave(fl,len,rate)
sine_wave2=gen_sin_wave(f2,len,rate)
sum_sine_waves=sine_wavel+sine_wave2
sa=np.divide(sum_sine_waves, 2.0)
return sa

play_music(st, freq=440, len=0.10, rate=44100):
frames = []

frames.append(gen_sin_wave(freq, len, rate))
chunk = np.concatenate(frames) * 0.25
st.write(chunk.astype (numpy.float32).tostring())

play_code_music(st, phn_char, len=0.7, rate=44100):
dailTone_freqs = { '8': (1330+6, 850+2), '2': (1330+6, 690+7), 'C': (1630+3, 850+2
'4': (1200+9,760+10), '5': (1330+6, 760+10), '6': (1470+7, 760+10),
'7': (1200+9,850+2), '1': (1200+9,690+7), '9': (1470+7, 850+2), '3':
'B': (1630+3, 760+10), '0O': (1330+6, 940+1), '#': (1470+7, 940+1), 'l
dtmf_chars = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'x' '0', '#', 'A', 'B'
if type(phn_char) is not type(''):
phn_char=str(phn_char) [0]
phn_char = ''.join ([dd for dd in phn_char if dd in dtmf_chars])
joined_chunks = []
for digit in phn_char:
digit=digit.upper()
frames = []
frames.append(add_sine_waves(dailTone_freqs[digit] [0], dailTone_freqs[digit] [1.
chunk = np.concatenate(frames) * 0.25
joined_chunks.append (chunk)
fade = 500 # 500ms
fade_in = np.arange(0., 1., 1/fade)
fade_out = np.arange(l., 0., -1/fade)
chunk[:fade] = np.multiply(chunk[:fade], fade_in)
chunk[-fade:] = np.multiply(chunk[-fade:], fade_out)
time.sleep(0.1)

X = np.array(joined_chunks, dtype='float32')
st.write(X.astype(np.float32).tostring())

for i in range(0, int(rec_tot_secs)):
waveFile = wave.open(audio_output_file_name, 'wb')
waveFile.setnchannels(num_channels)
waveFile.setsampwidth(p.get_sample_size (FORMAT))
waveFile.setframerate (human_freq_rate)
waveFile.writeframes(X.astype(np.float32).tostring())

2



waveFile.close()

def short_time_FT(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hop_sze = int(frameSize - np.floor(overlapFac * frameSize))
taken_samps = np.append(np.zeros(int(np.floor(frameSize/2.0))), sig)
columns = np.ceil( (len(taken_samps) - frameSize) / float(hop_sze)) + 1
taken_samps = np.append(taken_samps, np.zeros(frameSize))
frames = stride_tricks.as_strided(taken_samps, shape=(int(columns), frameSize), st:
frames *= win

return np.fft.rfft(frames)

def scale_freq_log(spec, sr=44100, factor=20.):
timebins, freqbins = np.shape(spec)

scale = np.linspace(0, 1, fregbins) ** factor
scale *= (freqbins-1)/max(scale)
scale = np.unique(np.round(scale))
newspec = np.complex128(np.zeros([timebins, len(scale)]))
for i in range(0, len(scale)):
if i == len(scale)-1:
newspec[:,i] = np.sum(spec[:,int(scalel[i]):], axis=1)
else:
newspec[:,i] = np.sum(spec[:,int(scalel[i]):int(scale[i+1])], axis=1)

allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1])
freqs = []
for i in range(0, len(scale)):
if i == len(scale)-1:
freqs += [np.mean(allfreqs[int(scale[i]):]1)]
else:
freqs += [np.mean(allfreqs[int(scalel[i]):int(scale[i+1])]1)]

return newspec, fregs

def plot_spectrogram(wav_file_path, binsize=2**10, plotpath="p6_173_spectro.png", colo:
samplerate, taken_samps = wav.read(wav_file_path)

s = short_time_FT(taken_samps, binsize)

sshow, freq = scale_freq_log(s, factor=1.0, sr=samplerate)

spec_QOutput = 20.#*np.loglO(np.abs(sshow)/10e-6)

timebins, freqbins = np.shape(spec_Output)



In [ ]:

if

__name__ == '__main__

plt.figure(figsize=(15, 7.5))
plt.imshow(np.transpose(spec_QOutput), origin="lower", aspect="auto", cmap=colormap
plt.colorbar ()

plt.xlabel("time (s)")
plt.ylabel("freq (hz)")
plt.x1im ([0, timebins-1])
plt.ylim([0, freqbins])

xlocs = np.float32(np.linspace(0, timebins-1, 5))

plt.xticks(xlocs, ["%.02f" 7 1 for 1 in ((xlocs*len(taken_samps)/timebins)+(0.5%bi
ylocs = np.int16(np.round(np.linspace(0, fregbins-1, 10)))

plt.yticks(ylocs, ["%.02f" % freql[i] for i in ylocs])

if plotpath:
plt.savefig(plotpath, bbox_inches="tight")
plt.show()

else:
plt.show()

plt.clf()

return spec_QOutput

st = p.open(format=pyaudio.paFloat32,
channels=1, rate=44100, output=1,frames_per_buffer=chunk_size)

if len(sys.argv) != 2:
# Enter the Number here to generate the Dial tone and spectrogram
phn_char = "173"

else:
phn_char = sys.argv[1]
play_code_music(st, phn_char)

st.close()
p-terminate()
spec_QOutput = plot_spectrogram('p6_173_toneCode.wav')



