
EC2_Non_Recursive_FFT

April 2, 2019

In [1]: import math
from cmath import exp, pi
import numpy as np

In [2]: def fft_fn(v):
n, h = len(v), len(v) >> 1
previous = np.zeros((n,),dtype=np.complex128)
previous = v[:]
latest = np.zeros((n,),dtype=np.complex128)
sublen, stride = 1, n

while sublen <n:
stride>>=1
for i in range(stride):

for k in range(0,n,2*stride):
factor = exp(-2j*pi * k / n)
latest[i+(k>>1)] = previous[i+k] + factor * previous[i+k+stride]
latest[i+(k>>1)+h] = previous[i+k] - factor * previous[i+k+stride]

previous, latest = latest, previous
sublen <<= 1

return previous

In [3]: X = np.random.rand(1024,)

0.1 Now Lets test our non-recursive FFT

In [4]: fft_fn(X)

Out[4]: array([523.03315668+0.j , 4.69304583-0.74800533j,
5.73716514+5.57015994j, ..., 0.71648219-1.89630633j,
5.73716514-5.57015994j, 4.69304583+0.74800533j])

0.2 Now lets see the Numpy’s FFT result for comparision

In [5]: np.fft.fft(X)

Out[5]: array([523.03315668+0.j , 4.69304583-0.74800533j,
5.73716514+5.57015994j, ..., 0.71648219-1.89630633j,
5.73716514-5.57015994j, 4.69304583+0.74800533j])

1

0.3 Now lets see if our Implimentation of non-recursive FFT is same as the Numpy’s
FFT

In [6]: np.allclose(fft_fn(X), np.fft.fft(X))

Out[6]: True

0.4 Hurray!! yes, they both are same :)

2

	Now Lets test our non-recursive FFT
	Now lets see the Numpy's FFT result for comparision
	Now lets see if our Implimentation of non-recursive FFT is same as the Numpy's FFT
	Hurray!! yes, they both are same :)

