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DIF Radix-2 FFT Algorithm

Below is the Fortran code for a Decimation-in-Frequency, Radix-2, three butterfly Cooley-Tukey FFT followed by a bit-reversing
unscrambler

A COOLEY-TUKEY RADIX 2, DIF FFT PROGRAM
THREE-BF, MULT BY 1 AND 1 ARE REMOVED
COMPLEX INPUT DATA IMN ARRAYS X AND Y
TABLE LOOK-UP OF W VALUES

€. 5. BURRUS, RILE UNMIVERSITY, SEPT 1883
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SUBROUTINE FFT (X,Y,N,M,WR,WI)
REAL X(1}, Y(1), WR(1), WI(1)

N2 = N
DO 18 K =1, M
N1 = N2
N2 = N2/2
IT = N2/2 + 1
DO1I=1, NN
L=1T4+N2
T X(I) - X{L)
X(I) = X(I) + X(L)
X(L)y = T
T Y(I) - ¥{L)
Y(I) = Y{I) + ¥(L)
Y(L) = T
1 CONTINUE
IF (K.EQ.M) GOTO 1@
IE = N/N1
IA =1
DO 20 1 = 2, N2
IA = IA + IE
IF (3.EQ.JT) GOTO 5@

C = WR(IA)

S = WI(IA)

DO 36 I =13, N, N1
L=14+N2
T  =X{1) - %L)
X(I) = X(I} + X(L)
TY = Y(I) - ¥(L)
Y(I) = ¥(I) + ¥(L)
X{L} = C*T + S*T¥
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This page is in 2 books: Figure(right) and the algorithm of Pre—one size n,/2 transform is solved completely before processing the other one, and so on
However, most traditional FFT implementations are non-recursive (with rare exceptions [link]) and traverse the tree “breadth-first”
= Fast Fourier Transforms link] as in Figure(left)—in the radix-2 example, they would perform n (frivial) size-1 transforms, then n/2 combinations info size-2
o Authors: C. Sidney Burrus transforms, then n/4 combinations into size-4 transforms, and so on, thus making log, . passes over the whole array. In
o Revised:Nov 18, 2012 contrast, as we discuss in "Discussion”, FFTW employs an explicitly recursive strategy that encompasses both depth-first and
o Go 1o book breadth-first styles, favoring the former since it has some theoretical and practical advantages as discussed in "EFTs and the

Memory Hierarchy”.

Y[0,...,n — 1] + recfft 2(n, X, ¢):

: IF n=1 THEN
Authors: C. Sidney Burrus
. y Y[0] « X[0]

o Revised:Aug 16, 2012 ELSE

PR A DOk YI[0,...,n/2 — 1] + rectft2 (n/2,X,2)
Yn/2,..,n — 1] « recfft2 (n/2,X + 1, 24)
FoR ky =0 710 (n/2) —1 DO
t « Yk]
Y (ki) +—t 4+ wh Y[k +n/2)
Yk +n/2] « t— B Y [k +n/2
END FOR

« Fast Fourier Transforms (6x9
Version)

A depth-first recursive radix-2 DIT Cooley-Tukey FFT to

compute a DFT of a power-of-two size n=2™. The input is an array
X of length m with stride ¢ (i.e., the inputs are X[f]

for £=0,...,m —1) and the output is an array ¥ of length m (with
stride 1), containing the DFT of X [Equation 1]. X +¢

denotes the array beginning with X[t]. This algorithm operates
out-of-place, produces in-order output, and does not require a
separate bit-reversal stage.

A second ordering distinction lies in how the digit-reversal is performed. The classic approach is a single, separate digit-reversal
pass following or preceding the arithmetic computations; this approach is so common and so deeply embedded into FFT lore that
many practitioners find it difficult to imagine an FFT without an explicit bit-reversal stage. Although this pass requires only O(n)
time [link], it can still be non-negligible, especially if the data is out-of-cache; moreover, it neglects the possibility that data
reordering during the transform may improve memory locality. Perhaps the oldest alternative is the Stockham auto-sort FFT
[link], [link], which transforms back and forth between two arrays with each butterfly, transposing one digit each time, and was
popular to improve contiguity of access for vector computers [link]. Aliernatively, an explicitly recursive style, as in FFTW, performs
the digit-reversal implicitly at the “leaves” of its computation when operating out-of-place (see section "Discussion”). A simple
example of this style, which computes in-order output using an out-of-place radix-2 FFT without explicit bit-reversal, is shown in
the algorithm of Pre [corresponding to Figure(right)]. To operate in-place with OQ(1) scratch storage, one can interleave small
matrix transpositions with the butterflies [link]. [link], [link], [link]., and a related strateqy in FETW [link] is briefly described by
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N =2"395" Set NI =2", IP = p. We first compute the required rotation and set up the
table of twiddle factors:

COMPLEX TRIGS(NI)
DEL = 4.0*ASIN(1.0)/ FLOAT(NI)
IROT = MOD((N/NI},NI)
KK=0
DO 10 K=1, NI
ANGLE = FLOAT(KK)*DEL
TRIGS(K)=CMPLX{COS(ANGLE),SIN(ANGLE))
KK = KK +IROT
IF (KK.GT.NI) KK = KK — NI
10 CONTINUE

The first (p+1)/2 radix-2 passes are then performed by the following code:

COMPLEX X(N), W, Z
NH=N/2
INC = N/NI
DO 50 L=1, (IP+1)/2
LA =2%*(L—1)
JA=0
JB=NH/LA
KK=1
DO 40 K=0, JB—1, INC
W = TRIGS(KK)
DO 30 J=K+1, N, N/LA
IA=JA+]
IB=JB+1J
DO 20 =1, INC
Z=W*(X(IA) - X(IB))
X(IA)=X(IA)+X(IB)
X(IB)=Z
IA=IA+ NI
IF (IA.GT.N) IA=IA—N
IB=IB+ NI
IF (IB.GT.N) IB=IB—N
20 CONTINUE
30 CONTINUE
KK=KK+LA
40 CONTINUE
50 CONTINUE

The details of the indexing may be understood by comparing this code with Table 1
(N =40, NI =8). The three outer loops are very similar to the three loops of the code
presented in [18], which performed the first half of a self-sorting in-place radix-2
algorithm. In the present case these loops set up base addresses in the first column of
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A GENERALIZED PRIME FACTOR FFT ALGORITHM FOR
ANY N =273'5"*%

CLIVE TEMPERTON®

Abstract. Prime factor fast Fourier transform (FFT) algorithms have two important advantages: they
can be simultaneously self-sorting and in-place, and they have a lower operation count than conventional
FFT algorithms. The major disadvantage ol the prime factor FFT has been that it was only applicable to a
limited set of values of the transform length N. This paper presents a generalized prime factor FFT, which
is applicable for any N = 273757 while maintaining both the self-sorting in-place capability and the lower
operation count. Timing experiments on the Cray Y-MP demonstrate the advantages of the new algorithm.

Key words. fast Fourier transform (FFT), prime factor algorithm (PFA), self-sorting FFT, in-place FFT

AMS{MOS) subject classification. 65T05

1. Introduction. Fast Fouriertransform (FFT) algorithms can be defined whenever
the transform length N can be factorized as N = N, N, - - - N,, where the factors N;,
are integers. Though there are many variants of these algorithms, they fall into two
basic categories: those based on the prime factor algorithm (PFA) of Good [5], which
are only applicable if the factors N, are mutually prime, and those descended from
the algorithm of Cooley and Tukey [3], for which there is no such restriction (indeed
the most familiar case is N, =2 for all i).

The prime factor algorithms have two important advantages. For a given value of
N, the operation count is lower than that for the corresponding Cooley-Tukey
algorithm. Moreover, the PFA can be made both self-sorting (input and output both
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COOLEY et al.: FAST FOURIER TRANSFORM
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SUBRUUTINE FFT(A,M)
COMFLEX A(1024),U,W,T
N= Z%=M '
NV2 = N/2

NM1 = N-1

J=1

DG 7 1=1,NM1
IF(1.GE.J) GO TO 5
T = A(J)

A{Jd) = A(])

ACl) = T

K=NV2

IF(K.GE.J) GO TO 7
J = J-K

K=K/ 2

GC TO 6

J= J+K

Pl = 3,14159265358979
DG 20 L=1,M

LE = 2%x|

LE1l = LE/2
vu=1(1.0,0.)
W=CMPLX(COS(PI/LE1),SINCPI/LEL).
Do 20 J=1,LE1

DO 10 i=J,N,LE

IP = |+LE1
T=A(IP)=*U
ACIP)=A(1)-T
A(l)sA(T)+T

UsU=xW

RETURN

END

algorithm. This one requires tl
mutually prime and uses a di
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(71, 7o) and (m, my), respectively
2. The result is a procedure quit
above, except that the phase
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The Fast Fourier Transform and
lts Applications

JAMES W. COOLEY, PETER A. W. LEWIS, ano PETER D. WELCH

Abstract—The advent of the fast Fourier transform method has
greatly extended our ability to implement Fourier methods on digital
computers. A description of the alogorithm and its programming is
given here and followed by a theorem relating its operands, the finite
sample sequences, to the continuous functions they often are in-
tended to approximate. An analysis of the error due to discrete sam-
pling over finite ranges is given in terms of aliasing. Procedures for

It is most likely that with the relatively small values ot
N used in preelectronic computer days, the former
methods were easier to use and took fewer operations.
Consequently, the methods requiring N log N operations
were neglected. With the arrival of electronic computers
capable of doing calculations of Fourier transforms with



procedure FFT (A, n, w)

Preconditions:
A is a Vector of length n;
n is a power of 2;
w is a primitive n-th root of unity.

a(z) = A[1] + A[2]*z + ... + A[n]l*z"(n-1)

#
#
E
#
#
# The Vector A represents the polynomial
#
#
# The value returned is a Vector of the values
# [ a(1), a(w), a(w™2), ... , a(w (n-1)) ]
# computed via a recursive FFT algorithm.
if n = 1 then
return A
else
feven <-— Vector( [A[1], A[3], ..., A[n-1]] )
Acdd <-- Vector( [A[2], A[4], ..., A[n]] )

Veven <-- FFT( Aeven, n/f2, w2 )
Vodd <-- FFT( Aodd, n/2, w2 )

V <-- Vector(n) # Define a Vector of length n
for i from 1 to n/2 do
V[i] <—- Veven[i] + w (i-1)#*Vodd[i]
Vin/2 + 1] <—— Veven[i] - w (i-1)#*Vodd[i]
end do
return V
end if
end procedure
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Code 1.1 (recursive radix 2 DIT FFT) Pseudo code for a recursive procedure of the (radiz 2) DIT
FFT algorithm, is must be +1 (forward transform) or -1 (backward transform):

procedure rec_fft dit2(all, n, x[], is)
// complex a[0..n-1] input
// complex x[0..n-1] result

{
complex b[0..n/2-1], c[0..n/2-1]1 // workspace
complex s[0..n/2-11, t[0..n/2-1]1 // workspace
if n == 1 then // end of recursion
x[0] := a[0]
return
nh := n/2
for k:=0 to nh-1 // copy to workspace
£
g[k] := a[2+k] // even indexed elements
t[k] := a[2%k+1] // odd indexed elements
// recursion: call two half-length FFTs:
rec_fft_dit2(s[] ,nh,bl],is)
rec_fft_dit2(t[],nh,c[],is)
fourier_shift(c[],nh,is*1/2)
for k:=0 to nh-1 // copy back from workspace
x[k] = blk] + clk];
x[k+nh] := blk] - clk]:
}

[source file: recfftdit2.spr]
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The data length n must be a power of 2. The result is in x[]. Note that normalization (i.e. multiplication
of cach clement of x[1 by 1/4/n) is nol included here

[FXT: recursive dit2 £t in slow/recfft2.cc| The procedure uses the subroutine

Code 1.2 (Fourier shift) For eoch element in of0 n-1] veploce ofk] by ofk] Hmes P 2WIEMn rroed wnith
v =+1/2 for the Fourier fransform.
procedurs fourier_shift(c[]l, m, v)
for k:=0 to n-1
clk]l := clk] * exp(vs2. 0+PIxIzk/n)
¥

cf. [FXT: fourier_shift in fft/fouriershift.ccl

The recursive FFT-procedure involves n log, (n) fmction calls, which can be avoided by rewriting it in
a non-recursive way. Omne can even do all operations in place, no temporary workspace is necded at
all. The price is Lhe necessily of an additional data reordering: The procedore revbin_permute(al] .ol
rearranges the array all in a way that each element 0, s swapped with gz, where T s obtained from x

by reversing its binary digits. This is discussed in section 8.1,

Code 1.3 (radix 2 DIT FFT, localized) Pseudo code for a non-recursive procedure of the (mdic 2)
T algorithm, is must be -1 or +1:;

procedure fft_dit2 localized(all, ldn, is)
/4 complex al0..2#*1dn-1] input, result
{

n := 2+sldn /S length of a[] iz a power of 2
revbin_persute(all ,n}

for ldm:=1 to ldn // log_2(n) iterations

{

m = Desldm
mh := m/2
for r:=0 to nm step m // n/m iteratioms
i
for j:=0 to mh-1 J// mf2 iterations
{
e = exp(is*2+PI+«I=j/m} // log_2(n)*n/m*a/2 = log 2(n)*n/2 computationz
n = alr+jl
v = alr+j+mh] = e
alr+jl =y
alr+j+mh] :=u - v
}
b

3
}

[source fle: MditZlocalized.spr]|

[FXT: dit2 fft localized in fft/fftdit2. ccl
This version of a non-recarsive FFT procedure already avoids the calling overhead and it works in place.
It works as given, bot s a bit wastefol. The [mqmnaﬁvn!} computation e := exp(is*2*PI+I+j/m) s

done /2 - log,(n) times. To reduce the number of trigonometric computations, one can simply swap the
two inner loops, leading to the first ‘real world’ FFI procedure presented here:

Code 1.4 (radix 2 DIT FFT) Pseude code for a non-recursive procedure of the (radiz 2) DIT algo-

rithm, iz musl be -1 or ) 1:

procedure fft_dit2{al], ldn, is)
#f complex a[0..2s+ldn-1] input, result
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R n = Jesldn
revbin_persute{al],n)
for ldm:=1 te lda /S log 2(n) iterations
{
m = Dexldm
mh = m/2
for j:=0 to mh-1 // m/2 iteratioms
1
e := axpliags2ePIsl+jfm) fF 1+ 2+ .. + 8/B + nfd + 0f2 = o-1 computations
for r:=0 to n-m atep m
{
u ;= alr+jl
v ;= alr+j+mh] * e
alr+j] =+ v
alr+j+mh] :=n - v
X
}
¥
}

[roasrce: file: Wtdit2spr]

[FXT: dit2 £ft in £Et/Eftdit?. cc]

Swapping the two inner loops reduces the number of trigonometric (exp() ) computations to n bt leads
to a feature that many FF'T implementations share: Memory access is highly nonlocal. For each recursion
shage: (value of 1dm) the array is traversed mh times with n/e accesses in strides of @b, As mh s a power
of 2 this can (on computers that use memory cache) have a very negative performance impact for large
values of . On a computer where the CPU elock (366MHz, AMD K6/2) is 5.5 times faster than the
memory clock (66MIz, EDO-RAM) 1 found that indeed for small o the localized FFT is slower hy a
factor of about (.66, but for large n the same ratio is in favour of the “naive’ proceduare!

It is & good idea to extract the 1dm=1 stape of the outermost loop, this avoids complex multiplications
with the trivial factors 1 4+ 0i: Replace

Emr 1dm:==1 to ldn

by
for r:=0 to n-1 step 2
{alr]l, alr+11} := {alr]l+alr+i], alr]l-alr+1]}

Em‘ 1dm:=2 to ldn



23 n/2 — o dwid 3 ponal Lo plus/minus 1 for & = 0/1 (& cvenfodd), respeetively.

The last two equations are, more compactly written, the
Idea 1.2 (radix 2 DIF step) Hadic 2 decirmation in froquency step for the FPT:
Pl L [t -

Flajead 2 fignfz (ﬂuum_ﬂ{sism)] (1.37)

Code 1.5 (recursive radix 2 DIF FFT) Psendo code for a reenrsive procedure of e (redic 2) deci-
mation m frequency FFT algorithm, is must be 1 ["fnnmrﬂ transform) or -1 fﬁur&hum‘d Emn#fnfm}:

procedure rec_fft_dif2{all, n, x[], is}
ff complex al0..n-1] input

// complex x[0..n-1] result

1

complex bl[0..n/2-11, cl[0..n/2-1] f/ vorkspace
complex s[0..nf2-1]. t[0..n/2-11 // workspace

if m == 1 then

z[0] := al0]
return

oh = n/2
or k:=0 to nh-1
s[k] := alk] // "left’ elements

tik] := alk+nh] ¢/ ‘right’ elements
¥
fur k:=0 to nh-1

f{alkl, tlkl}l := {Calkl+tlkld, (alkl-tlkl}}

fourier_shift(cl],nh,is+0.5)

rec_TTft_dif2(s[],nh,bl],is)
rec_fft_dif2(t[],nh,cl],is)

=G

for k:=0 to nh-1
x[3j] := blk]
x[j+1] := clk]
j 1= j42

}

}
[source fle: recfftdifZ.spr]

The data length oomost be a power of 2. The resull is o x[].
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Algorithm 7.2 The iterative radix-2 DIT FFT algorithm in psendo-code.

begin
PairslnGroup .= N /2 Begin with N/2 butterllies in one group
NumOfGroups :— 1 Same twiddle factor is employed in a group

Distance :— N2
while NumfGroups < N do
for K := 0 to NumOfGroups — 1 do Combine pairs in each group
JFirst :— 2+ K + PairsInGroup
JLast ;= JFirst + PairsInGroup — 1
Jtwiddle -— K Access conseentive w|m|
W = w|Jtwiddle| Assume wm| — wf,, m bit-reverses £
for .J .= JFirst to JLast do
Temp := W s al.J | Distance
ald + Distance| :— alJ] — Temp
alJ] == alJ] + Temnp
end for
end for
PairsInGroup = PairsInGroup/2
NumHGroups :— NumOfGroups « 2
Distance :— Distaneo /2
end while
end

a|iqigioipip] contains the bit-reversed Xy qi0,. Refer to Figure 7.6 for the decimal
subscripts of all 32 bit-reversed output elements X, iiae,-

revy — . m wm  am
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