1.7 Inverse FFT for free

Suppoae you programmed some FFT alporithm just for one valoe of 18, the sign in the exponent. There
i 8 nice Lrck Lhal gives Lhe inverse bransform for free, if your implementation uses seperale arrays for

CHAPTER 1. THE FOURIER TRANSFORM 24

real and imaginary part of the complex sequences to be transformed. If your procedure is something like

procedure my_fftlar(], aill, 1dn} // only for is==+i !
// real ar[0..2*xldn-1] input, result, real part
/f real aild..Z**1dn-1] input, result, imaginary part

£/ incredibly complicated code

IF that you can't see how Lo uudif:r
ff for is=—1

Then you don't need to modify this procedure at all in order to get the inverse transform. If you want
the inverse transform somewhere then just, instead of

my fft{arl]l, aill, 1dn) // forward fft

type
my_fft{aill, arl[l, 1dn) // backward fft
Note Lhe swapped real- and imaginary parts | The same trick works il your procedure ooded Tor Gaxed
ie=—1.
To see, why this works, we first note that

Fla+ibl = Flag]+ioFlaal+iF[bs]+ o F[ba] (1.67)
— Flagl +iF[bs] +ic (Flaal — i Flbal) (1.68)

and the computation with swapped real- and imaginary parts gives
Flot+ia] = Flbs| +iFlag] +iao (Flba] —iF[aa]) (1.69)
. but these are implicitely swapped at the end of the compuatation, giving

Flag] +iF[bgl —io (Flaa] —iFpal) = F 'la+it] (1.70)

When the type Complex is used then the best way to achicve the inverse transform may be to reverse
the sequence aceording to the symmetry of the FT ([FXT: reverse nh in anx/copy.h], reordering by
ke k' mod n). While not really “free’ the additional work shouldn’t matter in most cases,

With real-to-complex Fl's (R2CFT) the trick is to reverse the imaginary part after the transform. Obwvi-
onsly for the complex-to-real FTs (R2CFT) one has to reverse the imaginary part before the transform.
Mote that in the latter two cases the modification does not yield the inverse transform but the one with
the *other’ sign in the cxponent. Sometimes it may be advantageous to reverse the input of the R2CFT
hefore transform, especially if the operation can be fused with other computations (eg. with copying in
or with the revbin-permutation).

Jorg Arndt
arndt@jjj.de

This document! was X d at September 26, 2002

Algorithm : Classical radix-2 IFFT

Illpllt: The evaluations f(wa[_j-zvrwﬂ})]f(wo [j-2m+l}), o f(w-:r{j-izfr¢+zrr;—l}:}
of some polynomial with coefficients in a ring R with primitive nth root
of unity w. Here, m is a power of two where 2m < n.

Output: (2m) - f mod (z?™ — w°)).

0. If (2m) = 1 then return f mod (z — w®VY)) = f(wVW).
1. Compute the IFFT of f(wU2m+0) f(oU2m+l)) f(ol2mtm-1))
to obtain fy = m - f mod (2™ — wﬂrfﬂj‘}}‘
9 Cﬂll'l:[_}lltl‘._‘: the IFFT of "ir(L'L‘I,.r,l'{,_-,i-“l*.rire.+1rn-])7 f(w"{j'z’”"’"’"'“}), o Jf(wa[j-ﬂm+2m—l})
to obtain fz = m - f mod (2™ — w-’-’{lﬂl})_
Compute fi = (W) 1. (fy — fz).
Compute fp = fy + fz.
Return (2m) - f mod (22™ —w°W)) = fy - 2™ + fp.

L

g

Figure 4.1 Pseudocode for classical radix-2 TFFT

Algorithm : Twisted radix-2 IFFT

Input: The evaluations f(w?U2m+0)) f(woU2m+l)) f(polU2mt2m=1))

of some polynomial with coefficients in a ring R.
Here R has a nth root of unity w, and m is a power of two where 2m < n.

Output: 2m - f(wU/®m) . x) mod (2> — 1).

0.
8

2.

o

o o

If (2m) = 1 then return f(w’") - 2) mod (x — 1) = f(w"V)).

Compute the IFFT of f(w?Y 3"’“*'”]'}, flagtramily . flaotrsntmol)
to obtain fy =m - f(w’®)/m.) mod (z™ — 1).

Cﬂlllplltll‘: the IFFT of f(wu{j-‘.mﬁm})’ Jr(w-;r{ja';!m+m.+l}}! o f{wa[jai‘.m+ﬂm—1})
to obtain m - f(w°2+1/m . :r) mnd (x™ — 1]

Twist m - f(w™@+H)/™ . 2) mod (z™ — 1) by w70V/m
to obtain fz =m- f(w ””-"'}f"" z) mod (z™ + 1).

Compute fy = fy — fz.

Compute fg = fy + fz.

Return (2m) - f(w0Y/ ™) . 2) mod (2?™ — 1) = f4-2™ + [p.

Figure 4.2 Pseudocode for twisted radix-2 IFFT

Algorithm : Split-radix IFFT (conjugate-pair version)

Input: The evaluations f(w” @ 4mt0)) f(wo GAmtl)) f(ye GAmtam—1))
of some polynomial with coefficients in a ring R.
Here R has a nth mnt of unity w, and m is a power of two where 4m < n.

Qutput: (4m) - f(w” @/Em) 4) Ir_lud[1Y,

0A.If (4m) = 1, then return f(w” Y - x) mod (z — 1) = f(w” V).

OB.If (4m) = 2, then call a radix-2 IFF'T &lgurlthm to compute the result.

1. Compute the IFFT of f(w?” U4™), f(w” G4m+Y) | f(w® G4mi2m-1))
to obtain fiy - 2™ + fx = (2m) - f(w? @/ . z) mod (22 — 1) .

2. Compute the IFFT of f(w? G-4m+2m)) f(o Gami2mil)y - f(,7 G4mt3m-1))
to obtain m - f(w” @W+2/™ . 2) mod (2™ — 1).

3. Compute the IFFT of f(w? U4mt3m)) f(yyo'Gamtdmt1)y f(,0'(-4m+am—1))
to obtain m - f(w” W)/ . 1) mod (2™ — 1).

4. Compute fy = m - f(w” “D/™. z) mod (2™ — I)
by twisting m - f(w® @+2/™ . x) mod (2™ — 1) by w=" /™

5. Compute fz = m - f(w” “D/™ . 1) mod (z™ + I)

by twisting m - f(w” “+3/™ . 2) mod (2™ — 1) by w” /™,

Compute f, =1 (fy — fz).

Compute fg = fy + f7.

Compute fq4 = fw + [fa-

9. Compute fp = fx — [a.

10. Compute fo = fw — fa-

11. Compute fp = fx + fs.

12. Return (4ﬂ:f)-f(m”’“m"m}-ﬂf) mod (z'™—1) = f4-2*"+ fp- ¥+ fo- 2™+ fp.

-l O L

Figure 4.3 Pscudocode for split-radix [FFT (conjugate-pair version)

Algorithm : New twisted radix-3 IFF'T

Input: The evaluations f(w®U3mt0)) f(AGIME) (A G8mt3m-1))
of some polynomial with coefficients in a ring R.
Here R has a nth root of unity w, and m 1s a power of three where 3m < n.

Output: (3m) - f(wA /G . 2) mod (z*™ — 1).

0. If (3m) = 1 then return f(w®Y . x) mod (z — 1) = f(w®))

1. Compute the IFFT of f(w?'U3m+0)) f(2G3mil)) _]r"(m.r’:“F Edmim=1)
to obtain fx =m - f(w® @)™ . 1) mod (z™ — 1).

2. Compute the IFFT of f(w® G:3mtm) f(uA G3mimil)y (A G3mt2m-1)y
to obtain fy = m - f{wﬂ"’ HHD/m . 2) mod (2™ — 1).

3. Compute the IFFT of f(w?'G3m+2m) f(A Gamt2mil)y £, A G3mt3m—1)y
to obtain fz = m - f(w?G+2/m . 1) mod (z™ — 1).

4. Let ¢ = w®'W/m,

5. Compute (fy)g= ¢ (fy)a+C - (fz)a foralld in 0 < d < m.
Combine the (fy)a’s to obtain [, = fy + [z.

6. Compute (fg)g =024 (fy)d + 2. (—d. {fg}d for all d in 0 < d < m.
Combine the (fg)4’s to obtain fz = Q- fy + Q- f5.

7. Compute f, = fg+ f,=—Q- fy — 2. f3.
8. Compute fa= fx — fa=fx+Q-fy + Q2. f4.
9. Compute fp=fx+ o= x+2 [y +Q- [z

10. Compute fo = fx + f, = fx + fvr + [z
11. Return (3m) - f(w®'0V3™) . 2) mod (2 — 1) = f4 - 2™ + fp- 2™ + fc.

Figure 4.4 Psecudocode for new twisted radix-3 1FFT

Algorithm : Wang-Zhu-Cantor additive IFFT

TR = =

]-Il-pui:’: I'he evaluations f{wj-'a“m-i-[.l)u f(wj-ﬂm+1}-. iy f(wj-ﬂm.+21rn—l)
of some polynomial f with coefficients in a finite field F
with n = 2% clements. Here, m = 2! and 2m < n.

Output: f mod (s;1 — @;).

0. If (2m) = 1, then return f mod (z — w;) = f(@;).

1. C{JHLIJUt’E the IFFT of f[:wj-Zm.—J-l}):l f{wj-iﬂm-l-l)u el f(wj-‘ﬂm+m—l)
to obtain r = [mod (s; — @y;).

2. Compute the IFFT of f(wjom+m); [(@j2mim+1),- - J(Tj2msam—1)
to obtain f mod (s; — wyj41)-

3. Compute g = f mod (s; — wa;41) — f mod (s; — wy;).

4. Return f mod (841 — @;) = q - (8: — waj) + 7.

Figure 4.5 Pseundocode for Wang-Zhu-Cantor additive IFFT

Algorithm : New additive IFFT

Input: The evaluations f(w;ni0), f(@jni1)s-- - F(@jmin-1)

of some polynomial f with coefficients in a finite field
with n = 2* elements. Here, 7 is a power of two.

Output: f mod (27 —z — w;).

0. If n =2, then return (f(ww2;11) — f(3;)) - (& — way5) + f(w02;).
1. Set T =,/7.
2. forg=j-7toj-7+7—1do
3 Recursively call the IFFT algorithm with input
f(wf#'r‘)! f{w¢-7+l:}: i !f{wq‘)-'?‘+f—l}
to obtain f mod (27 — 2 — wy).
4. end for (Loop ¢)
5. Assign the coefficient of 2} from f mod (27 — z — @) to hy(wy)
foreachdomj-t<op<(j+1)-Tandeach AmO0<A<7—1.
6. for A=0to7—1do
T- Recursively call the new IFFT algorithm with imput
hlimj-f): h};(mj~7'+l)-p B h};(fﬂjﬂ'+r—l)
to obtain hy(z) mod (2" — 2z — w;) = ha(x).
8. end for (Loop A)
9. Construct g(y) using the coefficients of hy(x) foreach Ain 0 < A < 7.
10. Recover f mod (27 — z — w;) by computing the inverse Taylor expansion
of g(y) at z7.
11. Return f mod (27 — = — w;).

Figure 4.6 Pseudocode for the new additive IFFT

FAST FOURIER TRANSFORM ALGORITHMS WITH APPLICATIONS

A Dissertation
Presented to
the Graduate School of

Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Mathematical Sciences

by
Todd Mateer
August 2008

Accepted by:
Dr. Shuhong Gao, Committee Chair
Dr. Joel Brawley
Dr. Neil Calkin

Dr. Kevin James

A FFT - Algorithms and Applications

Si gna 1= oIy ionally efficient sparsity-inducing coherence spectrum

of complete and non-complete data sets
and

Communication

Technology

The nrorder iterati emes for a nenlinear Kirchhoff-Carrier
wave equation associated with the mixed inhomogeneous
conditions

A statistical-thermodynamic analysis of stably ordered
substitutional structures in graphene

By V Tatarenko and Taras Radchenko

D.N. Kim
J.J. Hwang

Fast Fourier
Transform: Algorithms
And Applications

@ Springer

3 Fast Algorithms i 41

;1 Radix-2 DUI-FET AlSOnthin e ciivn s s iesn dasansns sansa 42
3.1.1 Sparse Matrix Factors forthe [ISIRI§ N =8 46
3.2 Fast Algorithms by Sparse Matrix Factorization 47

Vil

Lines 6-8 set up the input data to be a ramp that varies from 0 to N.

6. double x1[] = new double[N]:
£ 3 for {(int j=0; j<N; j++)
8. =l — 3

Now the housekeeping. The programmer, interested in keeping copies of the original
data, the result of the forward FFT and the result of the inverse FFT, must allocate
four arrays! This 1s an unusual case, as it requires that all intermediate results be kept
for checking purposes. Normally, production code would not have to keep all
intermediate results.

9. double[] in r = new double[N];

10 double[] in i1 = new double[N];
The in r and in 1 arrays are copies of the input data, with the imaginary component
equal to zero. Real data (like audio data) often has a zero imaginary component. There
are algorithms that can save significant time by taking advantage of the zero
imaginary part of the input data. This requires a different FFT implementation.

il double[] fftResult r = new double[N]:
12. double[] fftResult 1 = new double[N];
13. // copy test signal.
14. in r = arrayCopy(xl);

Line 14 copies the input data into in_r.
5. f.forwardFET (in r, in i);

Line 15 replaces in r and in_1 with the forward FFT results.

16. // Copy to new array because IFFT will
o // destroy the FFT results.

18. fftResult r = arrayCopy(in r);

19. fftResult i = arrayCopy(in i),

20 f.reverseFET(in r, in 1);

79 System.out.-println("j\txl [j]1\tre[jl\tim[3]1\Ev[3]1") -
P for{int 1=0; i<N; i++) {

23 System.out.println(

24 . b) b

g sL[A] """+

26. fftResult r[i] + "\t" +

27. titResult afi] 4+ "AgY @

7.2 18 in rlil);

29 H

30. }

About the author

Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA.
He 1s currently the Chairman of the Computer Engineering
Department at Fairfield University, in Fairfield CT, a senior member of the IEEE and
President of DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or
co-authored three books (Java, Digital Signal Processing, Image Processing in Java
and Java for Programmers). He has authored over 40 journal publications. Email:
lyon@docjava.com. Web: http://www.DocJava.com.

JOURNAL OF OBJECT TECHNOLOGY

Online at http:/f'www jot fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol 8, Mo. 5, July-August 2009

The Discrete Fourier Transform,
Part 2: Radix 2 FFT

By Douglas Lyon

Abstract

This paper is part 2 in a senes of papers about the Discrete Fourier Transform
(DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is
on a fast implementation of the DFT, called the FFT (Fast Fourier Transform) and
the IFFT (Inverse Fast Fourier Transform). The implementation is based on a well-
known algorithm, called the Radix 2 FFT, and requires that its’ input data be an
integral power of two in length.

Part 3 of this series of papers, demonstrates the computation of the PSD (Power
Spectral Density) and applications of the DFT and IDFT. The applications include
filtering, windowing, pitch shifting and the spectral analysis of re-sampling.

1 THE FFT

Given a sampled waveform

v,.j €[0.N-1] 1)

The Continuous Time Fourier Transform (CTFT) is defined by:

Inverse FFT: Algorithm

How to Multiply

integers, matrices, and polynomials

Agorithm Uesigr

N JON KLEINBERG - EVA TARDOS
I

4

PEARSON Slides by Kevin Wayne.
F'-__-Hadﬂ Copyright @ 2005 Pearson-Addison Wesley.
m“hsleir All rights reserved.

1 tpmplate<int B> woid

2 FItShMeCol fint ~sian, Lot K, int etoidel;

1 floati* dataT, ftloatZ* datad ||
4 float? w[R];

5 int stridel = BLm*T.x;

5 int loxT = [EEy v REEy) VB et) STy Fh w
! int inel = 1.y=sicidel;

g Pap [int r=07 roR; rtt)

9 LU = = Hate|idxl ¥ c¥iacl| ;s

10 DaFEL| =, B, N, Loy, Tox 1i

11 it{ strided < gtridel | |

12 dimb b = ki, j = tidsxlzslridel] fateidel;
13 angle = sign=z*M PI*j/ iNYatcidel/aCeided);
14 =ari Int r=0; r<Ez r++ | |

15 v[e] *= jcosi{i*angle),sin{i*angle)];
16 L #= T,ow;:

1k I

18 1

19 int lncd = T,y strideD;

20 int ioxld = boyTR*incI+oxpano | igxI%ineT, inci,) §
21 Al steided == 1 7 4

22 Int idel = £, 2%H + t.y

23 int idxl = LR . x + t.x;

24 ineD = T, W% 0x;

25 1D = Slo, wiBaoxtD.X) "1+ 1dn32

26 exchange | v, B, 1, idsb,T.y, idxS, ioc0)i
27]

25 tloat 5 - {(glap < 11 7 1 ¢ SRy

29 for | int c=0; roH; r++)

a0 data[1dx0 + p*inct] = a¥*vlr]:

31

Fig. 5. Pseadocode for shansd memory radix-B FFT aloag columas

used with the hicrarchical FIFT. strideT amd strided are the strides
of sequence clemeents om opul and outpul. The kernel i invoked with
Te set o a muoliple of R not smaller than OW, Ty = N/R, and
B = (stridel/Tz M/siLridel). The twiddle stape (lincs 11-18) and
ﬂtw (times: 19-27) of the hierarchical algpoeithm are slso incloded in
e L

global memory FFT, we set the number of threads T' to
T = max{[64] g, N/R). These lower bounds on the thread
count also ensure thai when the data is read from global
memory (lines 4-6), il will be read in conlipuous sepmenls
greater than C'W in length. However, when T' = N/, the
data must first be exchanged between threads. In this case,
the kernel compules more than one FFT al a lime and the
number of thread blocks used are reduced accordingly. The
data is then restored to its original order to produce large
conliguous sepments when wrillen back to global memory.
When T — N/, no data exchange is required after reading
from global memory, Because the data is always writien back
to the same location from which il was read, the FFT can be
performed in-place. As mentioned previously, bank conflicts
that occur when R is a power of two can be handled with
appropriate padding.

The large number of registers available on NVIDIA GPUs
refalive to the size of shared memory can be exploited o
increase performance. Because the data held by each thread
can be stored entirely in registers (in the array v), the FFT
in each ileration (line 26) can be compuled withoul reading
or writing data to memory, and is therefore faster. Shared
memory is used only o exchange data between registers of
different thresds. If the number of regisiers were smaller, then
the data would have to reside primarily in shared memory.

Additional memory might be required for intermediate results.
In particular, the Sockham formulation woukd regquine at least
twice the amount of shared memory doe (o the fact that il is
performed out-of-place. [arger memaory requirements reduce
the maximum N that can be handled.
. Hierarchical FFT

The shared memory FET is fast but limited in the sizes it
can handle. The hierarchical FFT computes the FFT of a larpe
sequence by combining FFTs of subsequences that are small
enough o be handled in shared memory. This is analogous (o
how the shared memory algorithm computes an FFT of length
N by utilizing multiple FFTs of length R that are performed
cntinely in registers. Suppose wie have an ammay A of length
N = NNz We first consider a variation of the standard
“four-step™ hierarchical FFT algorithm [23]:

1) Treating A as N, x Ny array (row-major), perform N,
FFTs of size Ng along the colomns.

2) Multiply each elemenl A;; in the amay with (widdle
factors w — e 2™0/N (_ for a forward transform, + for
the inverse).

3) Perform Ng FFTs of size N, along (he rows.

4) Transpose A from N, x Ng to N x N,

Ng is chosen lo be small enough thal the FFT can be
performed in shared memory. If N, is too large to fit into
shared memory, then the algorithm recurses, treating each
row of length N, as an Ny, % Nog armay, elc. One way Lo
think about this algorithm is that it wraps the original one
dimensional array of length NV into multiple dimensions, each
small enough that the FFT can be performed in shared memory
along that dimension. The dimensions are then transformed
from highest o lowest, The effect of the mulliple transposes
that oceur when coming oul of the recursion is o reverse Lhe
order of the dimensions, which is analogous to bit-reversal.
The original “Tour-step™ algorithm swaps sfeps 3 and 4. The
end resull is the same, except that FFTs are always performed
along columns. For example, suppose A 15 partiioned wrapped
into a 3D array with dimensions (N, Nz, N3). The execution
of the original and the modified algorithms can be depicted as
follows:

(N1, N2, N3) (N1, N3, N3)
(N1, N3, Na) (N, Ny, N3)
(N}, Nz, Ns) (Na, N2, N})
(N3, N2, Ny)

where ' indicates an FPT transformation along the specified
dimension. The { index in step 2 corresponds to an element’s
index in the transformed dimension (V) and the j index cor-
responds to the concatenation of the indices in the underlined
dimensions (V). The original algorithm (left) performs all of
the FFTs in-place and uses a series of transposes al the end o
reverse the order of the dimensions. The entire algorithm can
be performed in-place if the transposes ane perfommed in-place,
In-place algorithms can be imporiant for larpe data sizes. In
the modified algorithm, the FIFT compotation always takes

vold exchange | floatd® v, int K, int stride;
int idxl,. int incly
1t 3G, Ak inesS 1Y

Llaac®* sr = ghared, *s5l = shamadiT*R;
ayncthreads ()
for{ int r=0, ¢ 1<R; r++) |

ins 1 o= Hd=xD 1 Frinchlruerdide;

L= e B B R R TR RS

(L] sl [L) =-an]ey;

i
10 syncthreads ()}
11 For[r=0; r<Bi i |}
12 inz 1 = {ines | r*incsE)*acrids;
13 wir] = (=x[il; =z[i]):
14 i
15 H
Fig. 3. Function for exchanging the R values in v between T (hreads.

The real and magmmary components of v ane stoned 18 separale amays o
avoid hank-conilicts. The sccond synchronization avoids read-aller-wrile dala
hazards, The first synchromzston &= necessary o avoid data hazanks only
when cxchange) is imvoked multiple mes,

satisfy the requests. For both sets of coalescing requirements,
the grealest bandwidth is achieved when the accesses are
conliguous and properly aligned.

Assuming that the number of threads per block T = N/R
is mo less than CW, our mapping of threads to elements in
the Stockham formulation ensures that the reads from global
memory an: in conligpous segments of at least CW in length
(line 23 in Fig. 2). If the radix It is a power of two, the
reads are also properly aligned. Writes are not contiguous
for the fist [log, CW iterations where N, < CW (line
29}, although under the assumption that T > CW, when
all the writes have completed, the memory areas touched do
contain contipuous sepments of sulficient length, Therefore,
we handle this problem by first exchanging data between
threads using shared memory so that it can then be written
oul in larger conliguous sepments lo global memory. We do
this by replacing lines 28-29 with the following:

int Sdxll = [2fMNsI*R 4+ [E%Ns):

exchange| ¥, R, 1, 1d=D,Ns, t.T };:
Sedmly = B¥TYE + t;
fori(Znt r=03 E<E: ztHt]

datal [Zdxb=r*T] = wir’;

The psendo-code for exchange() can be found in Fig. 3.
To maximize the reuse of data read from global memory
and to reduce the total number of ilerations, it is best © nse
a radix 1T thal is as larpe as possible. However, the size of
I iz limited by the number of registers and the size of the
shared memaory on the multiprocessors, Redocing the number
of threads reduces the total number of registers and the amount
of shared memory used, but with too few threads there are not
enough warps 10 hide memory latency. We have found that
using T — max([64] g, N/ 1) produces good results, where
[#] e represents the smallest power of R not less than .
Bank conflicis: Shared memory on cummenl GPUs is orga-
nized into 16 banks with 32-bit words distributed round-
robin between them. Accesses o shared memory are serviced
for gproups of 16 threads al a lime (hall-warps). IT any of
the threads in a half-warp access the same memory bank

1 temp_ate<nt B> wold

2 FfoEhMami nt soagna: Snk Neo FPloat2 % <dntalil

3 P oabkd «w[R];

4 ipt ZdrE =Nk

5 foar{ “nt r=0; T<R; T4 1

b wlx = data|idxG | TAT|;

7 EL T == HSR)

8 LaFrfel i, H, W, B)7

9 e o= |

140 ik idx - expandit.v,.H R, BY

11 exchange (v, R, 1, idx,W/R, =, T };

12 Lakfsi{ v, B, N, £ |;

13 erchange (v, R, 1, 6. T, Zd=,M8 15

14 1

15 f oat 5 = Isigr < 11 7 1 & 1/H:

16 for| int e=l; E<BR; £l]

17 data 2= duiG L] = s*wlr]:

18

19

20 wodid: DeEft (Eloatd® vy intaRy Snt W

21 e ‘ntoatelde=1) |

42 for| int NE=1l: Ms<N: Nz*=H ||

23 Flont angle. = sign*2*M-PTE35Hs (Ha*R);
24 forl int r=0p r<E: T]

25 wir] *- [cosir*anglel, s=inlr=anglal):
26 FET<H>{ v 13;

27 int dxl = expand(i.Mz,H];

28 “nk xS - wxpand (i, MNSR, R

23 exchange| », R, stride, 1dzD,MNs, 1dx5,H/R };
30 1

=i B |

g 4, Psewdo-owde for shared memory miix-R FFL This kermel 55 usesd

whem N is small enowph that the entire FI'T can be performed using jost
shared memory and megisiers.

al the same lime, a confict occurs, and the simultaneous
accesses must be senahred, which degrades performance. In
order to avoid bank conflicts, exchange() writes the real
and imaginary components 1o separale amays with stride 1
instead of a single array of float?. When a float? is
wrillen (0 shared memory, the two components are wrilten
separately with siride 2, resulling in bank conflicts. The call
to exchange() still resolts in bank conflicts when 7 i5 a
power of two and N, < 16. The solution is to pad with NV,
emply values between every 16 values. For [l — 2 the extra
cost of computing the padded indexes actually outweighs the
benefit of avoiding bank conflicts, bot for radix-4 and radix-
8, the net pain is significant. Padding requires extra shared
memory. To reduce the amount of shared memory by a factor
of 2, il is possible (0 exchange only one component af a time,
This requires 3 synchronizations instead of 1, but can result
in a net gain in performance because it allows more in-flight
threads. When R is odd, padding is not necessary because [
is relatively prime w.rt the number of banks.

B. Shared Memory FFT

Por small ¥, we can perform the enlire FFT using only
shared memory and registers without writing intermediate
resills back to global memory. This can result in substan-
lial performance improvements. The pseudo-code for our
shared memory kemnel is shown in Fig. 4. As with the

that support writing multiple values to the same location in
miltiple bffers can save the redundant reads, but must either
use more complex indexing when sccessing the values wrillen
in a preceding iteration, or after each iteration, they must
copy the values o their proper location in a separale pass
[15], which consumes bandwidth. Thus scatter is important
for conserving memory bandwidth.

Fig. 2 also shows pseudo-code Tor an implementation of the
FFT on a GPU which supports scatter. The main difference
between GFD_FFT() and CPU_FFT() is that the index j
inlo the data is generated as a function of the thread number
t, the block index b, and the number of threads per block T
{line 13). Also, the iteration over values of N, are penerated
by mulliple invocations of GPU_FFT() rather than in a loop
(line 3) because a global synchronization between threads is
needed between the iterations, and for many GPUs the only
global synchronization is kernel lermination.

For each invocation of GPU_FFT(), T is set to N/R and
the number of thread blocks B is sel o M, where M is the
number of FFTs to process simultaneously. Processing multi-
ple FFTs at the same tume is important becanse the number
of warps used for small-sized FFTs may nol be sufficient Lo
achieve full utilization of the multiprocessor or to hide memory
latency while accessing global memory. Processing more than
one FFT resulls in more warps and alleviates these problems.

Despite the fact that GPU_FFT() uses scatter, it still
has a number of performance issucs. First, the whleés o
memory have coalescing issues. The memory subsystem tries
to coalesce memory accesses from multiple threads into a
smaller number of accesses (o larper blocks of memory. But
the space belween consecutive accesses penerated during first
few iterations (small N,) is too large for coalescing to be
effective (ling 29). Second, the algorithm does not exploit low-
latency shared memory to improve data reuse. This is also
a problem for traditional GPGPU implementations as well,
because the praphics APIs do nol provide access o shared
memory. Finally, to handle arbitrary lengths, we would need
to wrile a separate specialization for all possible radices 1.
This is impractical, especially for laree [l In the nexl seclion
we will discuss how we address each of these issues.

Because GPUs vary in shared memory sizes, memory, and
processor confipurations, the FFT algorithms should ideally
be parametrized and auto-mned across different algorithm
variants and architectures,

IV. FFT ALGORITHMS

In this section, we present several FFT algorithms — a
global memory algorithm that works well for larger FFTs with
higher radices on architectures with high memory bandwidth, a
shared memory algorithm for smaller FIFTs, a hierarchical FFT
that exploits shared memory by decomposing large FFTs into a
sequence of smaller ones, mixed-radix FFTs thal handle sizes
that are multiples of small prime factors, and an implementa-
tion of Bluesiein's algorithm for handling larger prime facions,
W also discuss extensions 0 handle multi-dimensional FFTs,
real FIFTs, and discrete cosine transforms (DCTs).

1 tleaci* CPU FFT [Int N, it Ry

2 Floati* . datal, floakd®* datally |
3 For{ int Ho=1; Ma<M; Hs*=H §

| Loci imt J=0; J<H/B; J++)

5 Frelberatiand], M, B, Na, datal, datsl |;
5] gwap | datal, datal |;

7 |

H raturh datal;

g

i}

11 wold SPU FPI [int N, fot R, int Ws,

12 floatd= datal, rloatiZ* datad)

13 lng-j = b*M + &}

14 Ftelterationd{ i, W, R, H5, dacal, datad |}
15 1

16

17 el FOEIReratioaofine 5, lor M, Lot B, Lot N
13 Cloatg* dated, CloatZ*datal)d
19 claatd wR|:

20 Lnt ko=E = 43

1 Elogt gngle = —EFW PIT(J%N5) £ INSTH) §

22 Lo Ank ©=0; r<B; =z4= b ¢

23 wlz] = datal[ld=xS+r=M/R];

4 ylel *= f[coslz*angle), sloirranglell;

25 |

26 FFT<Rx| v |

i int id=xD = expand(j,Nm.R);

Z8 Eprd int T©=0; ©<H; oH+¥£ 3

29 datal [ideD+o*Ma] = wizls

in i

31

32 valo FFET<#>[Tlzat2* v | |

13 Eloat? wll = w|0];

34 w[0] = wl + al];

35 wll] = %G = w[l];

ElT B

EY

iy ot axpandi{int idxL, Int M1, int M2 1]

ig resurn fiaxL/RL)ENEARD + | IdxDRmL)

a0

Fg. 2. Reference implementation of the radix- R Stockham alponithm, Hach
ileration over the data combines 1/ subarmay of length Ne inlo ammays ol length
RN, The serations stop when the entire amray of lenpth N s obitaned,
The data is read from memory and scaled by so-called mwiddle facers (lines
20-25), combined wang an H-point FET (line 26), and wntlen back out o
memory (lincs 27-29). The number of threads wsed for GPU_FFT(), T, is
N/R The expand() function can be thought of as inserting a dimension
of length Ny afier the first dimension of length ¥y in a linearized index.

A. Global Memory FFT

As mentioned in Section LB, the pseudo-code for
GPU_FFT() in Fig. 2 can lead to poor memory access C0a-
lescing, which reduces perfformance. On some GPUSs the rules
for memory access coalescing are quite siringenl. Memory
accesses 10 global memory are coalesced for groups of CW
threads at a lime, where W is the coalescing width. CW is
16 for recent NVIDTA GPUs. Coalescing s performed when
each thread in the group accesses either a 32-hit, 64-it, or 128
bit word in sequential order and the address of the first thread
is aligned to (CW = word size). RBandwidth for non-coalesced
accesses is about an order of magnitude slower. Later GPUs
have more relaxed coalescing requirements. Memory accesses
can be coalesced even if they are not sequential, so long as all
the threads access the same wond size. The hardware issues
memory lransactions in blocks of 32, 64, or 128 byles while
seeking to minimize the number and size of the transactions to

High Performance Discrete Fourier Transforms on
Graphics Processors

Naga K. Govindaraju, Brandon Lloyd, Yun Doisenko, Burlon Smith, and John Manferdell
Microsofi Corporation
{ nagag dalloyd, yurido,burtons jmanfer } @ microsoft.com

Abstraci—We present novel algorithms for computing discrete
Fourier transforms with high performance on GPUs. We present
hierarchical, mixed radix FFT algorithms for both power-ofl-two
and non-power-ol-lwo stzes. Ouor hicrarchical FFT alporithms
efficiently exploit shared memory on GPUs vsing a Stockham
formulation. We reduce the memory transpose overheads in
hierarchical alporithms by combining the trunsposes imto a block-
based multi-FFT algorithm. For non-power-of-two sizes, we use a
combination of mixed radix FFTs of small primes and Bluestein's
algorithm. We use modular arithmetic in Bluestein's algorithm
to improve the sccoracy. We implemented our slporithms using
the NVIINA CUDA APl and compared their performance with
NVIDIA’s CUFFT library and an optimized CPU-implementation
(Inted’s MEKL) on a high-cod guad-core CPLL On an NYIDIA
GPU, we obtained performamce of up 1o 300 GFlops, with typical
performance im of 2-4x over CUFFT and 8=
improvement over MKL for large sizes.

I. INTRODUCTION

The Fast Fourier Transform (FFT) refers to a class of
algorithms for efficiently computing the Discrete Fourier
Transform (DFT). The FET is used in many dilferent fields
such as physics, astronomy, engineering, applied mathematics,
cryptography, and computational finance, Some of its many
and varied applicalions include solving PDEs in compulalional
flusd dynamics, digital signal processing, and moltiplying large
polynomials, Because of ils imporance, the FFT is osed
in several benchmarks [or parallel compulers such as Lhe
HPC challenge [1] and NAS parallel benchmarks [2]. In this
paper we present algonthms for compiting FFTs with high
performance on graphics processing units (GPUs).

The GPU is an attractive target for computation becanse of
ils high performance and low cosl. For example, a $300 GPU
can deliver peak theoretical performance of over | TFlop/s
and peak theoretical bandwidth of over 100 GaiB/s. Owens et
al. [3] provides a survey of algorithms using GPUs lor peneral
purpose computing. Typically, general purpose algorithms for
the GPU had to be mapped to the programming model pro-
vided by graphics APls. Recently, however, allemative APls
have been prowvided that expose low-level hardware features

and the peformance characieristics of the GPU. We support
non-power-of-lwo sizes using a mixed radix FFT for smail
primes and Bluestein's algorithm for large primes. We address
important performance issues such as memory bank conflicts
and memory access coalescing. We also address an accuracy
issue in Bluestein®s algorithm that anses when osing single-
precision arithmetic. We perform comparisons with NVIDIA S
CUFFT library and Intel’s Math Kemel Library (MEKL) on a
high end PC. On data residing in GPU memory, our library
achicves up o 300 GFlops al factory core clock seflings,
and overclocking we achieve 340 GFlops. We obtain typical
performance improvements of 2—4x over CUFFT and 8-
4= over MEKL for larpe sizes. We also oblain significant
improvements in numerical accuracy over CUFFT.

The rest of the paper is oreanized as Tollows, After dis-
cussing related work in Section Il we present an overview
of mapping FFT computation to the GPU in Section 111, We
then present our algorithms i Section [V and implementation
details in Section V. We compare resulis with other FFT
implementation in Section V1 and then conclude with some
ideas for fulure work.

I1. RELATED WORK

A larpe body of research exisls on FFT alporithms and
their implementations on various architectures. Sorensen and
Bormus compiled a database of over 3400 entries on efficient
alporithms for the FFT [8]. We refer the reader (o the book
by Van Loan [9] which provides a matrix framework for
understanding many of the algorithmic variations of the FFT.
The book also louches on many imporiant implementalion
iSSLes.

The research most related (0 our work involves acceleraling
FFT computation by using commodity hardware such as GPUs
or Cell processors. Most implementations of the FFTs on the
GPU use graphics APls such as currenl versions of OpenGL
or DirectX [10], [111, [12], [13], [14], [15]. However, these
APIs do not directly support scatters, access to shared memory,

IFFT Algorithm with Pseudo-Code

Distortion is a really simple algorithm. Each “distorted” sample can be
computed with only the value of the original sample. The original sample
changes only if it is on the wrong side of the “threshold.”

FFT Frequency Analysis Pseudo-Code

In this object-based pseudo-code for frequency analysis, it is assumed that
the FFT conversion is already implemented.

Variables
input pointer;
total points;
real in[MAX], Ar[MAX];
imag in[MAX], Ai[MBX];

Constructor ()

sel sizeini size)
total points=size;
input pointer=0;

add (x sample)
real in[input pointer]=x;
imag in[input pointer]=0;
input pointer=input pointer+l;

perform FFT ()
// Perform the FFT algorithm previously
// described, using real in and imag in
// as the complex inputs and using
// Br and BAi to store the outputs
FET (}

input pointer=0

get out power (x integer)
return sgrt(Ar[x]*Ar([x]+Ai[x]*Ai[x])

	fft_1_1
	fft_1_2
	ifft_2_1
	ifft_2_2
	ifft_2_3
	ifft_2_4
	ifft_2_5
	ifft_2_6
	ifft_2_7
	ifft_2_8
	ifft_2_9
	ifft_3_1
	ifft_3_2
	ifft_3_3
	ifft4_1
	ifft4_2
	ifft5_1
	ifft5_2
	ifft5_3
	ifft5_4
	ifft6_1

